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SUMMARY

This paper presents a numerical algorithm using the pseudostress–velocity formulation to solve incom-
pressible Newtonian flows. The pseudostress–velocity formulation is a variation of the stress–velocity
formulation, which does not require symmetric tensor spaces in the finite element discretization. Hence
its discretization is greatly simplified. The discrete system is further decoupled into an H(div) problem
for the pseudostress and a post-process resolving the velocity. This can be done conveniently by using
the penalty method for steady-state flows or by using the time discretization for nonsteady-state flows.
We apply this formulation to the 2D lid-driven cavity problem and study its grid convergence rate. Also,
computational results of the time-dependent-driven cavity problem and the flow past rectangular problem
are reported. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For decades, much research has been done on the stress–velocity/stress–velocity–pressure
(r−u/r−u− p) formulations for Navier–Stokes equations [1–3]. These formulations attract many
attentions because: (1) they come from the original physical laws and give a direct description
of the stress, which in some applications is the most interesting variable and (2) formally they
resemble the stress–displacement formulation of elasticity equations, which hopefully will give a
better understanding of the coupled solid–fluid problem.

To further explain these advantages, we first give the stress–velocity–pressure formulation in
below. Let � be a bounded domain in Rn , where n=2,3. Consider the behavior of a viscous,
incompressible Newtonian fluid occupying � over a time period t ∈(0,T ). The basic equations
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for the incompressible Newtonian flow can be stated as following: Find the stress r, the velocity
u and the pressure p satisfying

�u/�t+u·∇u−divr = f (balance of momentum)

r+ pI−�(∇u+(∇u)t ) = 0 (constitutive law)

∇ ·u = 0 (conservation of mass)

(1)

where � is the kinematic viscosity, I is the identity tensor and f is the external body force. Here,
u=(ui )1�i�n is an n-dimensional vector, r=(�i j )1�i, j�n is an n×n symmetric tensor and the
divergence of r is defined by (divr)i =∑n

j=1 � j�i j , for i=1 . . .n. The term u·∇u should be
understood as a vector whose i th component is

∑n
j=1 u j� j ui . To close the system, proper initial

and boundary conditions need to be applied. In a mixed system like problem (1), either a Dirichlet
boundary condition u|�D =g or a Neumann boundary condition rn|�N =h, where n is the unit
outward normal, can be imposed. For simplicity, we only consider the formulation using pure
Dirichlet boundary condition. An extension to a certain Neumann-type boundary condition and its
implementation will be discussed later in Section 3.3. For now we consider the following initial
and boundary conditions:

u|t=0=u0, u|�� =g

System (1), which comes from the original physical laws, is usually called the stress–velocity–
pressure formulation of incompressible Newtonian flows. Its formulation explains why it has the
advantages mentioned in the beginning of this section.

However, one difficulty in solving problem (1) directly is that the discrete spaces for r and u
have to satisfy the inf–sup condition (the LBB condition) [4], in order to prevent spurious modes
to enter the approximation through the discrete gradient operator. We say that the discrete space
is stable if it satisfies the inf–sup condition. It is extremely difficult to construct finite element
spaces for the stress, which are symmetric and stable at the same time [4, 5]. The few currently
available stable symmetric tensor spaces are very expensive, for example, 24 degrees of freedom
(dofs) per triangle in 2D [5] and 162 dofs per tetrahedral in 3D [6]. This has been one of the
most prohibitive aspects of the stress-based formulation. Many researchers have thus resorted to
using augmented formulations [7–9] in which the symmetry is weakly imposed, or least-squares
formulations [10–13], which do not require the LBB condition.

To avoid this difficulty while keeping advantages of the stress-based formulations, a new
pseudostress–velocity formulation was proposed [14, 15] for Stokes equations. In this paper, we
present algorithms based on the pseudostress–velocity formulation for solving Navier–Stokes
equations. For steady-state problems, a Picard iteration is used to linearize the equations and the
resulting linear system is decoupled by the penalty method. For nonsteady-state problems, the
problem is linearized using a semi-implicit time discretization and the resulting linear system can
be decoupled directly. In both cases, one ends up with solving a convective H(div) problem for
the pseudostress.

A common criticism of stress-based formulation is that it seems to contain more variables
than a velocity–pressure formulation, and hence will result in a larger problem. We will show
in Section 2.4 that, by using the pseudostress–velocity formulation and decoupling as mentioned
above, the resulting linear algebraic system is not necessarily larger than the system derived from
a velocity–pressure formulation.
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The paper is organized as follows. In Section 2, we describe the pseudostress–velocity formu-
lation and its finite element discretization. Details about how to decouple the system for both
steady-state and nonsteady-state problems are also explained. Section 3 is devoted to numerical
experiments that demonstrate the accuracy and the convergence behavior of the pseudostress–
velocity formulation. Finally, a conclusion is given in Section 4.

2. THE PSEUDOSTRESS–VELOCITY FORMULATION AND ITS FINITE ELEMENT
DISCRETIZATION

In this section, we discuss the pseudostress–velocity formulation for Navier–Stokes equations
together with its discretization and decoupling. Denote Mn , n=2, 3, to be the field of n×n tensors.
Let A : Mn →Mn be a fourth-order tensor defined by As=(1/�)(s−((1/n)trs)I) for all s∈Mn .
Here, trs is the trace of s. Recall that the symmetric stress in system (1) is defined as

r=−pI+�(∇u+(∇u)t )

We define the non-symmetric pseudostress as

r̃=−pI+�∇u

Since

divr−div r̃=�div(∇u)t =�∇(∇ ·u)=0

clearly, System (1) can be rewritten as:

�u/�t+u·∇u−div r̃ = f

Ar̃−∇u = 0
(2)

Notice that Ar̃ is trace free, hence the incompressible constraint ∇ ·u=0 is satisfied through
∇ ·u= tr(∇u)=0. Also, the pressure

p=−1

n
tr r̃

is unique only up to a constant. Other physical quantities such as the velocity gradient, stress and
vorticity can be expressed algebraically in terms of the pseudostress:

∇u=Ar̃, r= r̃+�(Ar̃)t , x= 1
2 (Ar̃−(Ar̃)t )

Similar to the pressure, they can all be computed in a post-process in the same accuracy as the
approximation of r̃. Here, we conveniently represent the vorticity x=∇×u as the skew symmetric
part of the velocity gradient.

2.1. The spatial discretization

The discretization will be applied in a variational form. Let L2(�) be the space of all square-
integrable functions and H(div,�,Mn) be defined by

{s∈Mn |�i j ∈L2(�) and divs∈(L2(�))n}
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For convenience, denote (·, ·) to be the L2 inner-product of scalar, vector and tensor functions
on �, and 〈·, ·〉�� the L2 inner-product on ��. For example, let u, v be the n-dimensional vectors
and r,s be the n×n tensors on �, then

(u,v)=
∫

�
u·vdx, (r,s)=

∫
�

n∑
i, j=1

�i j�i j dx

〈u,v〉�� =
∫

��
u·vds

The finite element approximation for system (2) is much easier than the one for system (1). Finite
element spaces for r̃ and u still need to satisfy the discrete inf–sup condition, according to the
mixed finite element theory. However, since the pseudostress is not necessarily symmetric, simple
mixed elements like the Raviart–Thomas (RT [16]) or Brezzi–Douglas–Marini [17] elements have
been proved stable for the discretization of system (2) [14]. In this paper, for simplicity, we consider
the lowest-order RT element (RT0). Since the RT element is designed to approximate coupled
vector functions and scalar functions, n copies of the RT element are used to approximate the
coupled pseudostress and velocity.

For the reader’s convenience, we describe the two-dimensional RT0 space for the pseudostress–
velocity formulation in detail. Let Th be a quasi-uniform triangular mesh or a rectangular mesh in
a polygonal domain �. Define discrete spaces for the pseudostress and the velocity, respectively, by

Rh =
{
r=

(
a1+c1x b1+c1y

a2+c2x b2+c2y

)
on each triangle in Th

or r=
(
a1+c1x b1+d1y

a2+c2x b2+d2y

)
on each rectangle in Th

and rn is continuous across the internal edges of Th

}

Vh =
{(

v1

v2

)
where v1,v2 are piecewise constants on Th

}

The dofs for the pseudostress are the values of rn at the center of each edge in Th . Hence, each
edge has two basis functions attached to it. The total number of basis functions is two times the
total number of edges. The dofs for the velocity are the values of v, which are piecewise constants,
in each triangle or rectangle. The total number of basis functions is two times the total number of
triangles/rectangles. In Figure 1, the dofs are illustrated.

The spatial discretization for (2) can be written as: find r̃∈Rh/span{I} and u∈Vh such that

(Ar̃,s)+(divs,u) = 〈g,sn〉�� for s∈Rh/span{I}
(div r̃,v)−(u·(Ar̃),v)−(�u/�t,v) = −(f,v) for v∈Vh

(3)
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v
v

Figure 1. Degrees of freedom for Rh and Vh on each triangle and rectangle. Every double arrow and dot
stand for two degrees of freedom corresponding to two components of rn or v.

where span{I}={cI |c∈R}. One has to exclude span{I} from the trial and test spaces for the
pseudostress, in order to make p=−(1/n)tr r̃ unique.

There are two things that need to be explained in the discrete system (3). First, notice that
the velocity boundary condition u|�� =g becomes naturally imposed as a boundary integral on
the right-hand side. This is common in the mixed finite element methods [4], in which Dirichlet
boundary conditions become natural and Neumann boundary conditions become essential. In the
pure Dirichlet boundary case, r̃ should not admit any type of boundary constraints, otherwise the
system will be over-determined. Discussion of how to impose Neumann boundary conditions will
be given in Section 3.3. The second is about the space Rh/span{I}, which seems to make the
discretization complicated. However, in the implementation one can proceed using discrete space
Rh directly. This will result in a rank 1 deficiency in the discrete system, which will not cause any
trouble if the system is solved by a Krylov subspace iterative solver such as the GMRES method.
A carefully designed multigrid solver can also deal with this rank deficiency. Further discussion
on this issue can be found in [14, 15].

The mixed problem (3) will result in a large linear algebraic system. To reduce the problem
size, we consider decoupling the system. The idea is to use the penalty method for steady-state
problems and the time discretization for nonsteady-state problems. Details will be given in the
next two subsections. The advantage of decoupling the system will be discussed in Section 2.4.

2.2. Steady-state case

To solve the time-independent problem, our strategy is to first use the Picard iteration to linearize
it, and then use the penalty method to decouple the system.

Consider Equation (3) but without the time derivative term (�u/�t,v). Let r̃k and uk be the
approximate solution from the kth step of the iteration. In the (k+1)th step, one makes a small
increment so that r̃k+1= r̃k+�r̃k and uk+1=uk+�uk will be the next approximation. By substi-
tuting r̃k+1 and uk+1 into Equation (3) and dropping the higher-order term �uk ·(A�r̃k), we obtain

(Ar̃k+1,s)+(divs,uk+1) = 〈g,sn〉��

(div r̃k+1,v)−(uk ·(Ar̃k+1),v)−(uk+1 ·(Ar̃k),v) = −(f,v)−(uk ·(Ar̃k),v) (4)

Problem (4) is the linearization of the steady-state Navier–Stokes equations by the well-known
Newton’s iteration. In general, Newton’s iteration has quadratic convergence rate, if the initial
guess lies in the basin of attraction. However, decoupling of system (4) turns out to be difficult.
Hence, we will explore an inexact linearization using the Picard iteration. In system (4), by further
assuming that �uk ·Ar̃k is small, we have

(uk+1 ·(Ar̃k),v)≈(uk ·(Ar̃k),v)
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Then the equation for the (k+1)th step of approximation becomes

(Ar̃k+1,s)+(divs,uk+1) = 〈g,sn〉��

(div r̃k+1,v)−(uk ·(Ar̃k+1),v) = −(f,v)
(5)

Problem (5) is exactly the pseudostress–velocity formulation of the Oseen problem, whose conver-
gence was established in [18]. Picard iteration usually has linear convergence but a larger basin of
attraction compared with Newton’s iteration.

By using the penalty method, an extra term is added to the mixed system (5) so that it becomes

(Ar̃k+1,s)+(divs,uk+1) = 〈g,sn〉��

(div r̃k+1,v)−(uk ·(Ar̃k+1),v)−�(uk+1,v) = −(f,v)
(6)

where the penalty constant � is small. It has been proved in [14] that for Stokes problems, the
penalty method does not deteriorate the accuracy of approximation provided that � is at least of the
same order as the discretization error. Therefore, when the RT0 element is used in the discretization,
setting �=O(h) will guarantee optimal convergence in the Stokes case. For the Navier–Stokes
equations, we will examine numerically whether the same result holds or not, later.

By setting v=divs, the mixed problem (6) can be decoupled into

(Ar̃k+1,s)+ 1

�
(div r̃k+1,divs)− 1

�
(uk ·Ar̃k+1,divs)=〈g,sn〉��− 1

�
(f,divs) (7)

uk+1= 1

�
(div r̃k+1−uk ·Ar̃k+1+f) (8)

The main work of solving the decoupled system is to solve Equation (7), which is an H(div)
problem with a convection term. The velocity uk+1 can then be explicitly computed from (8).

2.3. Nonsteady-state case

To solve the time-dependent problem, a semi-implicit Euler scheme is used for time discretization.
Given the solution of the kth time step, the solution of the (k+1)th time step is calculated by

(Ar̃k+1,s)+(divs,uk+1) = 〈g,sn〉��

(div r̃k+1,v)−(uk ·(Ar̃k+1),v)− 1

�t
(uk+1,v) = −(fk+1,v)− 1

�t
(uk,v)

(9)

Again by setting v=divs, system (9) can easily be decoupled into

(Ar̃k+1,s)+�t (div r̃k+1,divs)−�t (uk ·Ar̃k+1,divs)=〈g,sn〉��−(�tfk+1+uk,divs) (10)

uk+1=uk+�t (div r̃k+1−uk ·Ar̃k+1+fk+1) (11)

The majority work in the solution process is to solve Equation (10).
In practical simulation, one may want to use higher-order schemes in order to get better conver-

gence rates. Again, it is essential to choose schemes that allow the decoupling as well.
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2.4. The convective H(div) problem

Equations (7) and (10) have the common form

(�r̃,s)�(Ar̃,s)+�(div r̃,divs)−�(uk ·Ar̃,divs)=F(s) (12)

where �=1/�	1 for the steady-state problem and �=�t
1 for the nonsteady-state problem.
Again, we mention that the boundary condition is imposed by 〈g,sn〉�� in the right-hand side. For
pure Dirichlet problem, there should be no boundary condition for r̃. Otherwise, the problem will
become ill-posed.

The H(div) problem (12), in its Stokes limit, has been studied in [14, 15], where optimal error
estimates and multigrid convergence rates were proved. However, for the Navier–Stokes case and
especially when the Reynolds number is large, the equation becomes convection dominated and
its numerical simulation becomes difficult. To our knowledge, currently there is no theoretical or
numerical study of such convective H(div)-type problems yet.

Decoupling of the system greatly reduces the size of the discrete problem. It is worth comparing
the size of pseudostress–velocity formulation discretized using the RT0 element with the size of
velocity–pressure formulation using Crouzeix–Raviart elements [19, 20], since both approaches
have the same accuracy. In n dimension where n=2, 3, the total number of dofs for system (3)
using the RT0 element is nN f +nNt , and the total number is nN f +Nt for the velocity–pressure,
where N f , Nt are the number of faces/edges and elements, respectively. However, after decoupling,
the H(div) equation (12) has a total size nN f . In this case, the discrete pseudostress system is
even smaller than the discrete velocity–pressure system. We also note that the velocity–pressure
system, especially in the time-dependent case, cannot be naturally decoupled as in the case of
pseudostress–velocity formulation.

3. NUMERICAL RESULTS

Our numerical experiments are done for two-dimensional problems only, although the formulation
can be applied to three-dimensional cases. For now we would like to avoid the complications
that arise in three dimensions, and focus the numerical study on the convergence and accuracy
in 2D. Two types of problems, the lid-driven cavity and the flow past a rectangular cylinder, are
considered.

3.1. Steady-state-driven cavity flow

The 2D lid-driven cavity problem, which describes the flow in a rectangular container driven
by the uniform motion of one lid, is one of the most popular benchmark problems. Consider
the Navier–Stokes equations in �=(0,1)×(0,1), with boundary data u=(1,0)t on the top lid
and u=(0,0)t everywhere else. One difficulty of this problem is that the velocity boundary data
is discontinuous at the two top corners. Thus, in the velocity-based approximation, one needs
to choose whether to use velocity (1,0)t , leaky, or (0,0)t , non-leaky at the two top corners.
However, the pseudostress–velocity formulation handles this discontinuous boundary data naturally.
The boundary term in Equation (12) is posed weakly using 〈g,sn〉��, which can be calculated on
each boundary segment separately. There is no need to choose the velocity at the two top corners.

We solve this problem using the process described in Section 2. Uniform rectangular meshes
and the RT0 element are used in the discretization. Since the exact solution is not available,
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Table I. Grid convergence rate for driven cavity.

‖uh−uh/2‖L2

Stokes Re=100 Re=100 Re=200

h �=1e−4 �=h �=1e−4 �=h

1
16 0.0513 0.0550 0.0540 0.0669
1
32 0.0290 0.0306 0.0302 0.0347
1
64 0.0160 0.0167 0.0165 0.0184
1

128 0.0087 0.0090 0.0089 0.0093

Asym. Order O(hk), k= 0.85 0.87 0.87 0.94
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Figure 2. Velocity profiles and streamline portraits for Re=100 with h= 1
128 and different �. Circles in

velocity profiles are solutions from [23].

a grid convergence study will be employed. In particular, the problem is solved on a sequence
of meshes generated by a refining process. The error between solutions on consequent meshes
is examined. In general, this should give a good indicator of the actual convergence rate. The
calculated L2 norm of the velocity, under different Reynolds number Re and penalty constant �,
is reported in Table I. We observe a convergence rate slightly less than O(h). This is because the
velocity is approximated by piecewise constants in the RT0 element. The best possible conver-
gence rate of piecewise constants is O(h). Also, since the exact solution to the driven cavity
problem has a corner singularity due to the discontinuous boundary data, it has been proved
that the best possible convergence rate for this problem is O(h(− lnh)) [21]. The results in
Table I for Re=100 with different choices of � also indicate that �=h is enough to guar-
antee convergence of the scheme. In all cases for Re=100 and h� 1

128 , the Picard iteration
starts with the initial guess u0=0 and reaches ‖uk+1−uk‖�10−6 within 20 steps. For Re=100
on a 256×256 mesh and Re=200, the Picard iteration starts with solutions computed from a
coarse grid.

To check the accuracy of the solution with different penalty constants, we compare the velocity
with published results in [22, 23]. Using a 128×128mesh, velocity profiles on the vertical centerline
for u1 and on the horizontal centerline for u2, together with the streamline portraits, are plotted
in Figure 2. Circles in velocity profiles are solutions from [23]. From the graph, the differences
between solutions from different � settings are not visible by eye. Thus, we also compare the
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Table II. Extremes of u1 on the vertical centerline and u2 on the horizontal centerline for the
time-independent Navier–Stokes-driven cavity flow with Re=100.

�=1e−4 �=h

h min(u1) max(u2) min(u2) min(u1) max(u2) min(u2)

1
16 −0.2059 0.1671 −0.2333 −0.1887 0.1493 −0.2077

1
32 −0.2121 0.1770 −0.2491 −0.2024 0.1665 −0.2343

1
64 −0.2136 0.1789 −0.2527 −0.2087 0.1734 −0.2450

1
128 −0.2139 0.1794 −0.2535 −0.2114 0.1766 −0.2496

1
256 −0.2140 0.1795 −0.2537 −0.2127 0.1781 −0.2518

[23] −0.2109 0.17527 −0.24533

[22] −0.2140424 0.1795728 −0.253830

extreme values of u1 on the vertical centerline and u2 on the horizontal centerline in Table II.
Smaller � gives better approximations.

Away from the two top corners, we also observe super-convergence of the pseudostress–velocity
formulation. The pseudostress is approximated using the RT0 element, which has jumps on tangen-
tial components across internal edges. A post-process is applied, which takes the average over
jumps, to derive a continuous pseudostress. A similar post-process is applied to the discrete velocity
and a continuous piecewise linear velocity is computed. The value of the continuous velocity at
each node is the average of the piecewise constant velocity on the surrounding rectangles. Define
�1=[(0,1)×(0, 12 )]∪[( 18 , 7

8 )×( 12 ,
7
8 )]. �1 is a subset of �, which excludes a strip of width 1

8 near
each top corner. When Re=100 and �=1e−4, the maximum norm

‖�h‖max=max
x∈�1

|�h(x)−�h/2(x)|

for the post-processed pseudostress and velocity components are reported in Table III. The
convergence rates of u and the off-diagonal components of r̃ are near O(h2). The convergence
rates of �̃11 and �̃22 suggest that the pressure p=− 1

2 tr r̃ does not have super-convergence.
Similar super-convergence results are observed in the Stokes case with �=1e−4, but not in
the Re=100 case with �=h. This is understandable, because the penalized system with �=h
has an O(h) dependence on the mesh size and hence super-convergence is not possible. When
� is small, but constant on all grids, the results given in Table III suggest certain level of
super-convergence.

We have examined the convergence behavior and accuracy of the pseudostress–velocity formu-
lation for the steady-state lid-driven cavity problem. A smaller � is preferred, although �=h gives
a reasonable solution. However, one problem with using small � is that the system becomes ill-
conditioned and hence it takes more time to solve. For all examples presented in this paper, the
convective H(div) equation (12), in each Picard iteration or each time step, is solved with a
multigrid algorithm as defined in [15]. This multigrid solver was originally designed for symmetric
H(div) problems. Its performance deteriorates for the non-symmetric H(div) problem (12), espe-
cially when � or the Reynolds number become large. The size of the coarsest mesh has to be
‘fine’ enough to ensure multigrid convergence [24]. In our experiments, when Reynolds number
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Table III. Super-convergence in �1 for Re=100 and �=1e−4.

‖·‖max

h u1 u2 �̃11 �̃12 �̃21 �̃22

1
16 1.25e−2 2.57e−2 3.47e−3 7.74e−4 2.08e−3 3.89e−3

1
32 3.80e−3 6.94e−3 1.20e−3 3.06e−4 6.54e−4 1.30e−3

1
64 1.38e−3 2.02e−3 4.46e−4 6.57e−5 1.88e−4 4.96e−4

1
128 2.74e−4 6.03e−4 1.90e−4 1.21e−5 5.43e−5 1.96e−4

Asym. order O(hk), k= 1.80 1.80 1.39 2.02 1.75 1.43

is 100 and the penalty constant is h, the multigrid algorithm converges with a 16×16 coarsest
mesh. However, when the penalty constant is set to be 1e−4, the multigrid only converges with
a 32×32 coarsest mesh (or 64×64 coarsest mesh when the finest mesh is 256×256). For larger
Reynolds numbers, one needs an even larger coarsest mesh to ensure the multigrid convergence.
Our experiments show that multigrid completely fails to converge when Re=400. Although a
plain GMRES solver with Picard iteration still converges, it is very slow on large meshes. Because
of the lack of an efficient solver, we did not perform experiments on steady-state lid-driven cavity
with higher Reynolds numbers.

There are many possible ways to improve the efficiency of the multigrid algorithm for
such kind of convection dominant problem. One can try special convection-related restric-
tion, prolongation operators and smoothers in the multigrid algorithm. Another choice is to
use an upwinding or streamline-diffusion finite element scheme. It is a good topic for future
research.

3.2. Time-dependent solution of the driven cavity flow

Next we look at numerical results for the time-dependent-driven cavity problem, discretized and
decoupled using the semi-implicit Euler method. For moderate values of the Reynolds number, it is
known that the solution to the time-dependent-driven cavity problem converges to the steady-state
solution, as time goes to infinity [22, 25]. Therefore, in our experiments, the time marching is
stopped when ‖uh(t)−uh(t−�t)‖L2�10−6. Our numerical experiments show that multigrid algo-
rithm works well in this case, if the time step �t is sufficiently small. All following computations
are done with a multigrid solver using a 2×2 coarsest mesh.

We first compute the time-dependent problem for Re=100 and Re=200, and compare the
solutions at the final time-step with corresponding steady-state solutions computed by the penalty
method, as shown in Section 3.1. A time-step size �t=0.02 is used in the computation. The results
given in Table IV verify that the time-stepping solution converges to the steady-state solution.
Both the penalty constant and Reynolds number slightly affect the asymptotic behavior of the
comparison.

We next examine the startup flows for Re=400 and Re=1000. Both problems are computed
on a 128×128 mesh, with a seven-level multigrid solver. A time-step size �t=0.01 is used
in the computation. Such a small time step is needed to guarantee the multigrid convergence.
We suspect that if plain GMRES is used in each time step, larger time-step size can be used in
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Table IV. Difference between the time-stepping solution and the steady-state solution.

‖uh(tN )−uh,�‖L2 (Re=100) ‖uh(tN )−uh,�‖L2 (Re=200)

h tN �=h �=1e−4 tN �=h

1
16 6 0.0106 0.0059 10.2 0.0223

1
32 7.4 0.0060 0.0031 12.8 0.0149

1
64 8.8 0.0032 0.0015 15 0.0081

1
128 10 0.0016 0.00075 17 0.0042

Asym. Order O(hk), k= 0.9091 0.9961 0.8105

Here, tN is the time when the stopping criteria ‖uh(t)−uh(t−�t)‖L2�10−6 is reached, and uh,� is the
steady-state solution computed using the penalty method with the penalty constant �, as shown in Section 3.1.

Re=400, time=2 Re=400, time=4 Re=400, time=6 Re=400, time=8 Re=400, time=21.2

Re=1000, time=2 Re=1000, time=4 Re=1000, time=6 Re=1000, time=8 Re=1000, time=28.6

Figure 3. Startup flow for Re=400 and Re=1000 at different times.

the computation. However, since multigrid converges much faster than plain GMRES, we decided
to sacrifice the time-step size for being able to use multigrid. Again, developing a more robust and
efficient solver for the convective H(div) problem will be very helpful here.

The streamline portraits at several different times are given in Figure 3. The time marching
terminates at t=21.2 for Re=400, and at t=28.6 for Re=1000. It is interesting to observe
the obviously different behavior of startup flows at Re=400 and Re=1000. We also computed
the solution for Re=3200 with mesh size 128×128. Although the solution converges, numerical
oscillations can be observed near two upper corners in the vorticity contour (see Figure 4). The
oscillation disappears when using a 256×256 mesh and time step �t=0.005, as shown in Figure 4.
We especially point this out because it has been reported in many circumstances [22, 23] that a
128×128 mesh is fine enough for the simulation of Re=3200. However, since the velocity in the
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Re=3200 Re=3200, grid = 256 × 256

Figure 4. Vorticity portraits on a 128×128 mesh (left) and on a 256×256 mesh (right).
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Figure 5. Velocity profiles on the centerlines on a 128×128 mesh. Circles denote results from [23].

pseudostress–velocity formulation is only approximated by piecewise constants, whose accuracy
is an order lower than most other numerical methods, our experiments show that a mesh finer than
128×128 is needed to resolve all the boundary layers in this case. To get better approximation
results, one can also use the RT1 element that has a first-order approximation for the velocity, or
an upwinding scheme.

Finally, to verify the accuracy of our numerical solution, in Figure 5 we report the velocity
profile at a time when steady state is reached and compare it with results from [23].

3.3. Flow past a rectangular cylinder

The flow past a rectangular cylinder is known to generate dynamic patterns for low to moderate
Reynolds numbers. To apply the pseudostress–velocity formulation to this problem, one has to
carefully set the outflow boundary condition. In this paper, we set the problem as in Figure 6.
The computational domain has dimension L×H =22×11. A square cylinder with edge length
B=1 is positioned in the horizontal center and with the upstream extent d=5. The boundary condi-
tion on the surface of blockage is set to be u=0. The boundary condition on the outer boundary is
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d

Outflow boundary

Inflow boundary

Figure 6. Flow past a rectangular cylinder.

set as

Left wall: u=(1,0)t

Top and bottom walls: (r̃n)1=0, u2=0

Right wall : r̃n=−�

(
�u
�t

)
prev

Here, (�u/�t)prev is the time derivative of u calculated from previous time steps. Notice that on
the top and bottom walls, the first component of r̃n is actually (r̃n)1=�12=��u1/�y. Hence,
this boundary condition is equivalent to �u1/�y=0 and u2=0. On the right wall (the outflow
boundary), the boundary condition can be understood as an approximation to

�u
�t

+ 1

�
r̃n=0

which is derived from the nonreflexive advective condition in [26] with the average convective
velocity on the outflow boundary set to 1.

This boundary condition is of a mixed type, which contains both Dirichlet and Neumann parts.
The Dirichlet part, or the velocity boundary data, is imposed as a boundary integral on the right-
hand side. However, the Neumann part, or the pseudostress boundary data, should be set explicitly
on r̃. Take the right wall as an example. Let h=−�(�u/�t)prev, which is a vector of piecewise
constants computed from the previous time step. Since the dofs of the RT0 element are r̃n on each
edge, one can simply set its value to be equal to h on each boundary edge in the mesh Th .

We use the semi-implicit Euler scheme with time-step size 0.02 for the time discretization,
and a five-level multigrid solver for the linear system in each time step. The problem is solved
on uniform rectangular meshes and the finest level in multigrid is of size 352×176. Flows with
Reynolds numbers 100 and 200 are tested. In Figure 7, the drag and lift history are given. It can
be seen that the drag coefficient oscillates twice as fast as the lift coefficient.

The calculated drag coefficients and Strouhal numbers are listed in Table V, and are compared
with other published results [28–30, 27]. Owing to the large blockage rate limited by the size of
the computational domain and the fact that the real flow is by nature a 3D phenomenon while

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:341–356
DOI: 10.1002/fld



354 Z. CAI AND Y. WANG

0 50 100 150 200
0.8

1

1.2

1.4

1.6

1.8
Drag history for Re = 100

t

c d
c d

0 50 100 150 200

0

0.5

1
Lift history for Re = 100

t

c l
c l

0 50 100 150 200
0.5

1

1.5

2

Drag history for Re = 200

t
0 50 100 150 200

0

0.5

1

Lift history for Re = 200

t

Figure 7. Drag coefficient and lift coefficient history for Re=100 and Re=200.

Table V. Comparison of drag coefficient (cd ) and Strouhal number (St).

Re Source B/H (%) d cd St

100 Present 9 5 1.6291 0.1442
100 Franke et al. [27] 7 11.1 1.483 0.149
100 Sohankar et al. [28] 7 18.3 1.466 0.142
100 Saha et al. [29] 10 6.5 1.51 0.159
100 Okajima (experimental) [30] 0 — — 0.141–0.145

200 Present 9 5 1.6528 0.1507
200 Franke et al. [27] 8.3 4.5 1.65 0.157
200 Sohankar et al. [28] 5 11.1 1.424 0.165
200 Saha et al. [29] 10 6.5 1.67 0.163
200 Okajima (experimental) [30] 0 — — 0.138–0.145

the numerical simulation here is done in 2D, it is known that the numerical Strouhal number is
usually slightly larger than the actual number.

Numerical oscillations can be observed in the vorticity portrait for Re=200 solved on a 352×
176 mesh. However, the oscillation disappears when the problem is solved on a 704×352 mesh.
In Figure 8, vorticity profiles on these two meshes are given, both at time when the lift force is 0
and the drag force is at its minimum. The difference can be seen clearly. The entire computational
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Re=200, grid=352× 176 Re=200, grid=704× 352

Figure 8. Vorticity contours for Re=200 on different meshes. Both at time when the lift force is 0 and
the drag force is at its minimum.

domain is plotted in Figure 8. Notice that there seems to be little or no reflection on the outflow
boundary.

4. CONCLUSION

We have presented a numerical algorithm using the pseudostress–velocity formulation for solving
Navier–Stokes equations. By introducing a new variable, the non-symmetric pseudostress, this
formulation avoids the common difficulty of discretizing the symmetric stress in other stress-
based formulations, while it maintains the nice property of the direct calculation of stress.
The resulting discrete system can be easily decoupled in both the steady-state and the nonsteady-
state cases. A detailed comparison shows that the decoupled problem, discretized with the lowest-
order RT element, has less dofs than the discretization of the velocity–pressure formulation, using
the Crouzeix–Raviart element.

Numerical examples for steady-state and nonsteady-state problems are reported. The grid conver-
gence analysis and the comparison to published results validate the accuracy of the pseudostress–
velocity formulation. The pseudostress–velocity formulation copes with the discontinuous velocity
boundary data naturally, as explained in the case of the driven cavity flow.

The problem we are facing now is to develop an efficient solver for the convective H(div)

problem. The current multigrid solver has many limits, for example, the penalty constant cannot
be too small or the time-step size cannot be large. Also, in some cases it requires the coarsest
mesh to be ‘fine’ enough. All these needs to be improved, which provides a good topic for future
research. An upwinding scheme might be able to boost the multigrid performance.
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